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Network Connection Games



i Network Games (NG)

= NG model the various ways in which selfish users (i.e.,
players) strategically interact in using a (either
communication, computer, social, etc.) network (modelled
as a graph)

s The Internet routing game is a particular type of
network congestion game

s Other examples of NG: social network games, graphical
games, network connection games, etc.

= Notice that each of these games is actually a class of
games, where each element of the class is specified by
the actual input graph, and it is called an instance of the
game (i.e, it is a specific game)



Network Connection Games (NCG)

= NCG are NG that aim to capture two competing issues for
players when using a network for communication purposes:
= to minimize the afforded usage cost
= to be provided with a high quality of service

= Two big categories of NCG:

= Network Design Games (a.k.a. Global Connection Games): Users
autonomously design a communication subnetwork embedded in an
already existing network with the selfish goal of sharing costs in
using it for a point-to-point communication

= Network Creation Games (a.k.a. Local Connection Games): Users
autonomously form ex-novo a network that connects them for
reciprocal communication (e.g., downloading files in P2P networks,
exchanging messages in social networks, etc.)
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First case study:
Network Design Games
(a.k.a. Global Connection
Games)



i Introduction

= Given a weighted graph G, a Global Connection
Game (GCG) is a game that models the selfish
design of a communication subnetwork of G,
i.e., a set of point-to-point communication
paths, where each path is associated with a

p
P

ayer, and the seltish goal of each player is

to share the costs for a joint use with other

ayers of the edges on its selected path

s In other words, players:
= pay for the links they personally use
= benefit from shar'ing links with other players in the

selected subnetwor



The formal definition of a GCG

It is given a directed weighted graph 6=(V,E,c); c, will
denote the non-negative real weigth of e € E

k players; each player is associated with a commodity (s;,
;) , with s;,t; €V, and the strategy for a player i is to
select a path P, in G from s; to ¥,

Let k, denote the load of edge e, i.e., the number of
players using e; the cost of P; for player i in a strategy
profile S=(P,,...,P,) is shared with all the other players
using (part of) it, namely:

cost(S) = Z c./Ke

this cost-sharing scheme is called
fair or Shapley cost-sharing mechanism



The formal definition of a

i GCG (2)

Given a strategy vector S, the designed
network N(S) is given by the union of all paths P,

Then, the social-choice function is the
utilitarian social cost, namely the total cost of

the desighed network:
C(S)= 2 cost(S) = X gpce/ k=2 ¢

ecN(s) ©

Notice that each player has a favorable effect
on the cost paid by other players (so-called
cross monotonicity), as opposed to the
congestion model of selfish routing



Open questions

s What is a stable network? We use NE as the
solution concept, and we will seek for the
existence of NE

= How to evaluate the overall quality of a stable
network? We compare its cost to that of an
optimal (in general, unstable) network, and we
will try to estimate a bound on the efficiency
loss resulting from selfishness

= Notice that the problem of finding an optimal
network is a classic optimization problem (i.e.,
the network design problem), which is known
to be NP-hard even if G is unweighted



Lower bounding the loss of
i efficiency

= Remind that a network is optimal or socially
efficient if it minimizes the social cost (i.e., it
minimizes the social-choice function)

= We know that the PoA is useful to estimate
the loss of efficiency we may have in the
worst case, as given by the ratio between the
cost of a worst stable network and the cost
of an optimal network

= But what about the ratio between the cost of
a best stable network and the cost of an
optimal network?




iThe price of stability (PoS)

» Definition (schulz & Moses, 2003): Given a (single-instance)
game G and a social-choice function C (which depends on the
payoff of all the players), let S be the set of all NE of G. If
the payoff represents a cost (resp., a utility) for a player,
let OPT be the outcome of G minimizing (resp., maximizing)
C. Then, the Price of Stability (PoS) of G w.r.t. C is:

P0S,(C) = inf Cs) ( 1) j

resp.,sup
ses C(OPT) s C(OPT)

= Remark: If G is a class of games (as for GCG), then its PoS
is the maximum/minimum among the PoS of all the instances
of G, depending on whether the payoff for a player is
either a cost or a uftility.



i Some remarks

= PoA and PoS are (for positive s.c.f. C)

= >1 for minimization (i.e., payoffs are costs) games
= <1 for maximization (i.e., payoffs are utilities) games

s PoA and PoS are small when they are close to 1
= PoS is at least as close to 1 as PoA is

= In a game with a unique NE, PoA=PoS, while in a
game with no any NE, they are not defined

= Why studying the PoS?
= sometimes a nontrivial bound is possible only for PoS

= PoS quantifies a lower bound to the efficiency loss
resulting from selfishness






optimal network has cost 12

COST1:7
cost,=H

is it stable?



..nol, player 1 can decrease its cost

COST1:5
cost,=8

is it stable? ..yes, and has cost 13!
— PoA >13/12, PoS < 13/12



..a best possible NE:

COST1:5
cost,=7.5

the social cost is 12.5 = PoS = 12.5/12
Homework: find a worst possible NE



Theorem 1

Every instance of the GCG has a pure Nash equilibrium, and
best/better response dynamics (i.e., that in which each
player at each step selects a best/better available
strategy) always converges.

Theorem 2

The PoA of a GCG with k players is at most k (i.e., every
instance of the game has PoA < k), and this is tight (i.e., we
can exhibit an instance of the game whose PoA is k).

Theorem 3

The PoS of a GCG with k players is at most H,, the k-th
harmonic number (i.e., every instance of the game has
PoS < H,), and this is tight (i.e., we can exhibit an
instance of the game whose PoS is H,)




i The potential function method

For any finite game, an exact potential function @ is a
function that maps every strategy vector S to some
(finite) real value and satisfies the following condition:

vS=(sy,...,S:,,...5y), let s'#s;, and let S'=(sy,....s".,....5)), then

D(S)-D(S') = cost(S)-cost.(S).

A (finite) game that does possess an exact potential function
is called potential game



Lemma 1

Every potential game has at least one pure Nash
equilibrium, namely the strategy vector S that
minimizes (resp., maximizes) ®, assuming players'’
payoffs are costs (resp., utilities).

Proof (minimization): Observe that @ is bounded. Then,

s’rar’rmg from 5= (54,... Si,..., S)), consider any move by a
player i that results in a new strategy vector S= (5..5) =
(3...., 8,.1.5i...., 8). Since CD(S) IS minimum, we have:
CD(S)—CD(S) = cos’ri(S)—cosTi(S)
— _/
Y
<0 player i cannot

m) cost(8)<cost(S) mm fﬁj;esaslse;’rts\l Eos'r




Convergence in potential games

+

Lemma 2

In any finite potential game, best/better response
dynamics always converges to a Nash equilibrium

Proof: By definition, improving moves for players decrease the value

of the potential function, which is bounded. Thus, sooner or later the
system will arrive to a state with the property that ®(S) cannot be
decreased by changing any single component of S, i.e., a NE. (]

@ However, it may be the case that converging to a NE
takes an exponential (in the number of players) number
of steps!



..furning our attention to
i the global connection game...

Let ¥ be the following function mapping any strategy
vector S to a real value [Rosenthal 1973]:

LIJ(S) = ZeeN(S) LIje(s)
where (recall that k, is the number of players using e in S)

Yo(S)=c.-H =c,-(1+1/2+.+1/k,).



Lemma 3 (¥ is a potential function)

Let S=(P;,....P,), let P'; be an alternative path for some
player i, defining a new strategy vector S'=(S_ P").

Then: Y(S) - ¥(S') = cost.(S) - cost(S).

Proof:
When player i switches from P; to P’;, some edges of N(S)

increase their load by 1, some others decrease it by 1, and the

remaining do not change it. Then, it suffices to notice that:

+ If an edge e exits from the solution, its load decreases by 1, and so its
contribution to the potential function decreases by c,./k,

+ If an edge e enters into the solution, its load increases by 1, and so its
contribution to the potential function increases by c./(k +1)

= Y(S)-¥(S) = W(S)-Y(S-P+P)=Y(P)YF) =
= 2gcpi Co/kKe - 2gpri €./ (K +1) = cost(S) - costy(S)).




Theorem 1

i Existence of a NE

Every instance of the GCG has a pure Nash equilibrium,
and best/better response dynamics always converges.

Proof: From Lemma 3, a GCG is a potential game, and
from Lemma 1 and 2 best/better response dynamics
converges to a pure NE. []

© It can be shown that finding a best response for a

player is polynomial (it suffices to find a shortest path in
G where each edge e is weighted as c,/(k_+1))

@ Instead, it can be shown that finding a NE of cost at
most C (and so, finding a best/worst NE) is NP-hard!



Price of Anarchy: a lower

i bound

Sp,eniSi ty,t

optimal network has cost 1
best NE: all players use the lower edge ‘ PoS is 1 @

worst NE: all players use the upper edge ‘ PoA is k @



Upper-bounding the PoA

Theorem 2

The price of anarchy in the global connection
game with k players is at most k (and so, from the
previous lower bound, this is tight).

Proof: Let OPT=(P,",..P,") denote the optimal set of paths (i.e., a set of
paths minimizing C), and let k,” be the load of an edge e in OPT. Let IT; be
a shortest path in 6=(V E,c) between s, and t;w.r.t. c, and let €(IT,) =
YecriiC. be The length of such a path. Finally, let S be any NE. Observe
that cost(S)< £(I1,) (otherwise the player i would change to I1;). Then:

C(S) =3 cost(S) < FAMT) < X &(P) =

YT <3 T kcsks =3 kcost(OPT) = k- C(OPT).
i=1

i=1 eePi* i=1 ecPi*



PoS for GCG: a lower bound

£0:. small value

1+¢




£0:. small value

‘_L PoS for GCG: a lower bound

1+¢

The optimal solution has a cost of 1+¢

Is it stable?



PoS for GCG: a lower bound

i £0:. small value
!

1+¢

..nol player k can decrease its cost...

Is it stable?



PoS for GCG: a lower bound

i &0 small value
T1,., Tk

1+¢

..nol player k-1 can decrease its cost...

Is it stable?



PoS for GCG: a lower bound

£0:. small value

1+¢

The only stable network

K
social cost: C(S)= 21 1/j=H.<Ink+1 k-th harmonic number
J:



Lemma 4

Suppose that we have a potential game with potential
function ®, and assume that for any outcome S we have

C(S)/A < ®(S)< B C(S)
for some A,B>0. Then the price of stability is at most AB.

Proof:

Let S be the strategy vector minimizing @ (i.e., Sis a NE,
from Lemma 1). Let S* be the strategy vector minimizing
the social cost

we have:

C(5)/A < ©(5) < d(S*) < B C(S*)
= PoS < C(5)/C(S*) < A-B.




Lemma 5 (Bounding ¥)

For any strategy vector S in the 6CG, we have:

C(S) <W¥(S) < H, C(9).

Proof: Indeed:
Y(S) = Zoonisy Pel(S) = Zeangs) Ce Hi,
= W(S) 2 €(S) = Z.cns) Ce
and ¥(S) < Hi: €(S) = Zoopns) Co' Mo




i Upper-bounding the PoS

Theorem 3

The price of stability in the global connection
game with k players is at most H,, the k-th
harmonic number (and so, from the previous lower
bound, this is tight).

Proof: From Lemma 3, a GCG is a potential game, and
from Lemma 5 and Lemma 4 (with A=1 and B=H,), its PoS
is at most H,.




